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This article presents an Open Systems Interconnection (OSI) architecture devel-
oped for the Deep Space Network. An historical review is provided to establish the
context for current United States Government policy on interprocessor communica-
tion standards. An introduction to the OSI architecture, its seven-layer approach,
and an overview of application service entities are furnished as a tutorial. Finally,
the results of a prototype system developed for monitor and control of a Deep Space

Station are also presented.

l. Introduction

The Deep Space Network (DSN) has, from its incep-
tion, employed automation whenever possible to support
its mission: telecommunications with spacecraft in deep
space. Over the past 25 years, advances in computer au-
tomation have accounted for substantial increases in oper-
ational productivity. Today, the Deep Space Stations are
operated with a fraction of the personnel required 20 years
ago. The DSN has evolved into a distributed computer
system with all of its elements interconnected. The soft-
ware programs (called application programs) used to oper-
ate the DSN are critically dependent on the software and
hardware that support the exchange of data among DSN
computers.

The development, integration, management, and main-
tenance of large distributed computer software systems is
a costly enterprise. Although the price of computer hard-
ware has dropped significantly over the past decade, the
cost of software development has increased. In the DSN,
software has become a major cost element. For example,
the Signal Processing Center (SPC) modification project
is a multimillion dollar effort and almost 80 percent is ear-

marked for software development. The DSN is not alone
in facing the financial burden of the software development
effort. The proliferation of distributed systems is a chal-
lenge facing government and the private sector.

Over the past two years, the DSN’s Information Sys-
tems Division has conducted research into a distributed
computer software architecture for the DSN that offers a
solution to the high cost of distributed systems. The Open
Systems Interconnection (OSI) architecture is an approach
to interprocessor communications developed by the Inter-
national Organization for Standardization (ISO) and is the
focus of that research effort. The reasons for this focus are

(1) The OSI architecture meets the functional require-
ments of the DSN.

(2) The OSI architecture is designed to decouple the ap-
plication program from the communications process.
With OSI standards, the DSN can purchase commer-
cial communication services and focus its resources

on specific DSN applications.

(3) The OSI architecture has been adopted by the Unit-
ed States Government as the standard for distri-
buted government computer systems [1].
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(4) The OSI architecture has been selected by the Con-
sultative Committee for Space Data Systems
(CCSDS) as the model for the international space
community [2].

An OSl-based architecture is expected to reduce the
cost of distributed computer systems by providing stan-
dard communication interfaces for application programs.
Market forces are driving the development of commercial
products that provide communication services in accor-
dance with the international standards. Products that
meet the standards provide interprocessor communications
between computers from different vendors. Competition
between vendors will drive costs down.

This article is the result of two years of extensive re-
search. It is written to provide a general education on
OSI as well as to present the results of the research and
prototype effort. To accommodate a wide audience with
different levels of knowledge, the article is composed of
four independent sections to permit selective reading. The
sections are

(1) Section II: An Historical Perspective and Govern-
ment Policy. An historical perspective on interpro-
cessor communications is presented to provide an un-
derstanding of how the technology and government
policy evolved.

(2) Section III: The OSI Basic Reference Model and Ap-
plication Entities. An overview of the OSI Basic Ref-
erence Model is presented with a description of each
layer’s function and a description of the current OSI
application entities.

(3) Section IV: An OSI Architecture for the DSN. An
overview of an OSI-based DSN architecture is de-
scribed. The DSN’s data flow is partitioned between
several application entities, and areas for additional
research are identified.

(4) Section V: A DSCC Monitor and Control Proto-
type. A detailed report on an OSI-based Monitor
and Control architecture for DSN tracking stations
is presented. The potential for major cost savings
is analyzed and the results of a prototype effort are
detailed.

This approach is necessary because, in order to under-
stand where one is and where one is going, it is necessary to
understand where one has been. To achieve a comprehen-
sive solution, one must understand the overall approach
and the total problem. Finally, no large-scale implemen-
tation should be initiated without a small-scale prototype
to verify the approach.
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Il. An Historical Perspective and Govern-
ment Policy

In the late 1960s, the Defense Advanced Research Proj-
ects Agency (DARPA) recognized not only the demand for
direct computer data exchange but the necessity for in-
dustrial standards that would be independent of the com-
puter manufacturer. The Department of Defense (DoD)
was already experienced in the business of computer data
exchange and the inability of systems built by different
companies to communicate. An early example was the
1950s Nike Ajax air defense system and the North Amer-
ican early warning radar system. The air defense system
was developed under Army supervision and the radar sys-
tem was developed under the Air Force [3]. When the
time came to exchange data for a coordinated defensive
response, the two systems were incompatible. With this
historical perspective, DARPA began a long-term research
effort through university and industrial laboratories to de-
velop standards for interprocessor communications.

The first steps involved simple systems with two com-
puters from the same manufacturer, connected by a cable.
Addressing and protocol issues arose with the addition of
the third and then the fourth computer. Still more prob-
lems arose with the introduction of computers from dif-
ferent manufacturers. Multiple cables were replaced by
the development of media access control technology, and
slowly the term local area network (LAN) emerged from
the laboratory to the commercial world. DARPA’s ef-
forts culminated in 1983 with the publication of two DoD
standards for interprocessor communications: Transmis-
sion Control Protocol (TCP) [4] and Internet Protocol (IP)
[5]. Today, work continues in the university and commer-
cial arenas, expanding what has become known as the DoD
suite of TCP/IP standards.

The effort to develop standards for the computer in-
dustry is by no means a DARPA-exclusive activity. A
number of different organizations, such as the Consulta-
tive Committee for International Telegraph and Telephone
(CCITT) and the Institute of Electrical and Electronics
Engineers (IEEE), are engaged in the standards develop-
ment effort. These organizations have provided a wide
variety of standards for different telecommunications me-
dia and media access techniques. The American National
Standards Institute (ANSI) has contributed standards for
character encoding and computer languages.

A more comprehensive and general solution to the prob-
lems of interprocessor communications is under develop-
ment by the International Organization for Standardiza-
tion (ISO). ISO began its effort in the mid-1970s and has



built on the lessons learned by DARPA. Called Open Sys-
tems Interconnection (OSI), the ISO approach provides for
rapid changes in computer hardware and telecommunica-
tions technology with an architecture that insulates the
user program from the manufacturer-dependent communi-
cation services. In addition, ISO recognized that the cost
of software development was exceeding the cost of com-
puter hardware, a significant change from 20 years earlier.
Consequently, the OSI architecture was also designed to
allow software systems to transcend computer hardware
changes and communication systems evolution,

The growing costs to the federal government of com-
puter hardware and software prompted the Office of Man-
agement and Budget in 1984, through the Office of the
Chief Executive, to commission a study by the National
Academy of Sciences on the status of interprocessor com-
munication standards. The report Transport Proiocols for
Department of Defense Data Nelworks was published by
the National Research Council (NRC) in February 1985
[6], with the recommendation that the United States De-
partment of Defense adopt the International Organization
for Standardization’s OSI as the basis for all interproces-
sor communications. The NRC committee made its rec-
ommendation based primarily on two considerations:

(1) The ISO and DoD protocols are basically equivalent
at the transport level.

(2) The worldwide market demand for ISO protocols
is far larger than the market for the DoD protocol
suite.

In response, the Department of Defense adopted OSI
protocols as costandards with the DoD standards, with
plans to make them “the sole mandatory interoperable
protocol suite” [7].

In 1987, the United States Congress passed the Com-
puter Security Act [8], which established the National Bu-
reau of Standards (NBS) as the sole government agency
responsible for the development of computer standards.
This legislation also created a new category of Federal In-
formation Processing Standards (FIPS’s) called compul-
sory standards and modified the federal property laws to
impose compulsory standards on the procurement of all
federal government property. In April 1987, the first draft
of the Government Open Systems Interconnection Profile
(GOSIP) was released for comment. In August 1988, the
draft document became the first compulsory Federal In-
formation Processing Standard—146 [1].

The motivations for GOSIP are clearly stated in its in-
troduction. “In the past, vendor-specific implementations

of data communications protocols led to isolated domains
of information, very difficult and expensive to bridge.”
Through GOSIP, “... the government expects to realize
significant savings through reducing duplicate circuits and
wiring, training, custom software, workstations, and cus-
tom hardware interfaces.”

The Department of Veterans Affairs (VA) provides an
excellent example of why GOSIP is necessary. The VA
is a very large government agency, spread around the
world, with computer networks numbering in the hun-
dreds. Given the size of the VA, it is impossible for
Congress to allocate funds to replace all the VA networks
with a proprietary computer network in a single budget
appropriation. In addition, the competitive procurement
process makes it impossible to guarantee a single ven-
dor source spread over many procurement cycles. Conse-
quently, a vendor-independent standard is the only mech-
anism available for the acquisition of network products
and services that ensure interoperability, and the selection
of OSI provides the United States Government with an
internationally recognized standard supported by a wide
variety of vendors [9].

The National Institute of Standards and Technology
(NIST, formerly the National Bureau of Standards) is re-
sponsible for the developiment of OSI network services in
the government. Through GOSIP, NIST is creating the
government market for commercial OSI products. NIST
sponsors quarterly meetings of the NIST Workshop for Im-
plementors of OSI to assist industry in the development of
these OSI products. In addition, NIST is coordinating the
conformance testing effort to assist government agencies in
determining the interoperability of commercial products.

lll. The OSI Basic Reference Model and
Application Entities

A. Basic Reference Model

The objective of the OSI architecture is a system where
user programs or application programs can employ the re-
sources of any processor in a network without concern for
the communications process or the computer hardware.
To achieve this objective, ISO adopted a layered approach
based on the functional partitioning of the communica-
tions process. The Basic Reference Model [10] emerged as
an international standard (ISO 7498) in 1984 and defined
seven layers, the so-called seven layer cake (see Fig. 1).
Each layer has been assigned a specific set of services and
an associate set of protocols. The seven layers are sum-
marized below [11,12].
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1. The application layer. This layer provides the
user program with an interface to an OSI system. In
this case, the user is any computer program or application
program that requires interprocessor communications. A
number of common communication functions have been
identified and grouped into so-called application entities
with standard services and protocols. The application en-
tities are the key to open systems and will be discussed in
more detail later.

2. The presentation layer. This layer (ISO 8823/
9576) provides a common representation of application
data that is communicated between application entities.
Common representation refers to the encoding of data
and the order of bits and bytes exchanged between pro-
cessors. For example, the exchange of data between a
processor using American Standard Code for Information
Interchange (ASCII) encoded characters and a processor
using Extended Binary Coded Decimal Interchange Code
(EBCDIC) encoded characters requires a data translation
before the information can be utilized. Another example
of a presentation issue is the exchange of data between a
32-bit/word computer processor and a 16-bit/word pro-
cessor where the bit and byte ordering must be adjusted
for the correct interpretation of the data.

3. The session layer. This layer (ISO 8327/9548)
provides dialogue services for those functions that require
the establishment of a connection and synchronization be-
tween any two machines prior to the exchange of informa-
tion. This layer provides the “Are you there”-“Yes I am”
exchange prior to the exchange of application data.

4. The transport layer. This layer (ISO 8073/8602)
provides those services required for the reliable end-to-end
transmission of data. The issues of error detection, error
recovery, and multiplexing are network dependent, and the
transport layer manipulates the underlying network ser-
vices to provide the appropriate quality of service (QOS).

5. The network layer. This layer (ISO 8473)
provides the networkwide (or internetwork) services re-
quired to transmit, route, and relay data between com-
puters without regard for the communications medium.
In networks composed of several segments connected with
bridges or independent networks connected through gate-
ways, the network layer provides the services and protocols
necessary to deliver the data to its final destination.

6. The data-link layer. This layer (ISO 8802-x)
provides support for the physical medium employed in the
transmission of data. ISO has established standards for

a wide variety of transport media including four types of

182

local area networks: an Ethernet (ISO 8802-3), a token
bus (ISO 8802-4), a token ring (ISO 8802-5), and a Fiber
Distributed Data Interface (FDDI).

7. The physical layer. This layer is the physical
communication medium that supports the transmission of
bits and is concerned with the electrical interface to the
equipment supporting the transmission.

The process of establishing ISO standards is a diffi-
cult and time-consuming effort that involves committees
from all participating nations. A standard begins as a
draft proposal (DP), moves to a Draft International Stan-
dard (DIS), and achieves International Standard (IS) sta-
tus over a period of three to six years. The key stan-
dards for the lower six layers (presentation layer to physical
layer) have been International Standards (IS’s) for more
than three years. Some of the application layer entities
are International Standards and others continue under de-
velopment [12].

B. Application Entities

Much of the standards effort is now focused on the ap-
plication entities, which are the key to the OSI architec-
ture. Using the appropriate application entity, standard-
ized software functions provide access to the OSI services
required for interprocessor communications. The applica-
tion entities are sunmarized below.

1. The Manufacturing Message Specification en-
tity. This application entity (MMS, ISO 9506) provides a
set of services developed from the Manufacturing Automa-
tion Protocol (MAP) initiative at General Motors in the
early 1980s. Designed as a process control standard, the
MMS Standard achieved IS status in 1989 and is aimed at
direct interprocessor communications among machines on
a factory floor. In the factory environment, an assembly
line can be composed of hundreds of machines performing
complex, precision tasks all as a unit. If any element of
the assembly line fails to perform or performs at less than
optimum performance, the assembly line as a whole fails
to perform. The interprocessor communication provided
by MMS is designed to support this type of environment.
The application of MMS to the DSN is discussed in detail
later [13].

2. The File Transfer, Access and Management
entity. This application entity (FTAM, ISO 8571) pro-
vides a service and protocol standard to access and manage
files in an open system and was one of the first applica-
tion entities to achieve IS status in 1988. Using FTAM,
a user program can open, read, write, and close files on



another processor just as though it were manipulating a
local file. FTAM also provides services for copying files
and obtaining file directories from remote systems. The
application of FTAM services might greatly simplify the
problems associated with centralized data recording at the
Deep Space Communication Complexes (DSCC’s). For ex-
ample, a telemetry processor can open a file for recording
on a remote network file server at the beginning of a space-
craft support pass, write the telemetry data to that file,
and close the file at the completion of the activity. Play-
back could be accomplished in a similar fashion using the
FTAM Read services.

3. The Network Management entity. This entity
(NM, ISO 9595/9596) developed as a result of the growing
use of distributed systems and the lack of mechanisms to
monitor and manage the communications resources of net-
works. Though network management is still in the draft
proposal stage of the standards process, five service ele-
ments have been identified as the core of this application
entity:

(1) Performance will be monitored at each layer of the
seven-layer architecture, providing information on
byte counts, time delays, data rates, and other sta-
tistical information related to the performance of the
communication process.

(2) Error Reporting and Logging will detect errors and
failures in the communications process.

(3) Security guards against unauthorized access.

(4) Configuration Management will provide for the allo-
cation and assignment of communications resources.

(5) Accounting Management will provide audit services
[14-16].

4. The Message Handling Systems Service en-
tity. This entity (MHS, ISO 10021), unlike other appli-
cation layer entities, is a collection of international stan-
dards that together form the basis for OSI electronic mail
(the X.400 standards). Many of the standards under the
umbrella of MHS are the result of a long collaboration
between ISO and the CCITT standards effort. The distri-
bution of DSN operational support messages is the result
of an excellent match of functional requirements.

5. The Directory Services entity. This entity (DS,
ISO 9594) is intended to provide a global interconnected
directory for all types of OSI entities, individuals, distri-
bution lists, application entities, and general agents using
network communications services. An international stan-
dard since 1989, Directory Services provides address res-
olution based on logical processor names anywhere in the
network.

6. The Remote Database Access entity. This en-
tity (RDA) is a proposed standard stimulated by the ex-
panding use of commercial database systems. Still in the
draft proposal phase, RDA is intended to provide a set
of standards for access to any “open systems” database
through a set of standard functions and a standard Se-
quential Query Language (SQL).

7. The Virtual Terminal entity. This entity (VT,
ISO 9040) is a standard for terminals and hosts to commu-
nicate across different networks without requiring that one
side know the terminal characteristics handled by the other
side. An International Standard since 1988, VT provides a
generic set of terminal characteristics for communication,
which can be mapped to local terminal characteristics for
display.

8. The Job Transfer and Manipulation entity.
This entity (JTM, ISO 8831/8832) is designed to support
computer-to-computer communications for the purpose of
performing work remotely. JTM developed as a spin-off of
batch processing and provides the protocols necessary to
transfer and perform jobs on processors in a distributed
system.

One of the most important aspects of the layered ar-
chitecture is the flexibility to select application layer ser-
vices that can operate over a number of different data-link
and physical layer transmission standards. For example,
an organization can implement an application based on
the Manufacturing Message Specification operating over
an Ethernet (ISO 8802-3) and move to an FDDI as its
data rate requirements change. This approach provides an
evolutionary path for distributed systems while preserving
the organization’s software investment.

In addition, the OSI-layered architecture is open to
expansion as new problems and technologies evolve. In
the mid-1980s for example, the Massachusetts Institute of
Technology developed X Windows to support a variety of
computer terminals. The X Windows concept is now in
the standards process and will emerge in the future as a
companion standard to the Virtual Terminal application
entity [17].

IV. An OSI Architecture for the DSN

An OSI architecture for the DSN would provide access
to communication resources through a standard OSI ap-
plication layer entity. The appropriate selection of the ap-
plication entity is the key and is based on the type of data
flow to be supported. A study of DSN data flow reveals
two general categories of data flow:
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(1) Real-time spacecraft data: acquired, recorded, and
transmitted back to JPL to support flight projects
(the end product of the DSN).

(2) Process control: the data exchange that supports all
aspects of DSN operations.

Included in the category of real-time spacecraft data
are subcategories such as the playback of recorded space-
craft data in nonreal time. Under the category of pro-
cess control are subcategories including the transmission of
support data and network control data. The partitioning
of data flow into these two categories provides a starting
point for the partitioning of the system.

Under the category of real-time spacecraft data, the
DSN is responsible for recording the spacecraft data types
at the DSCC’s. In addition, the DSN is frequently required
to relay the spacecraft data types back to JPL in near-
real time. The services and protocols provided by FTAM
will support the functional requirements for recording
spacecraft data at the Deep Space Stations. The teleme-
try subsystems at the stations can use FTAM software
to open a client—server relationship with a station data
recording subsystem (commonly referred to as a network
file server). The FTAM services F_OPEN, F_WRITE,
and F_CLOSE would be used to open files on the station
data recorder, write the spacecraft data to those files, and
close the files at the completion of the spacecraft track.
The playback of recorded spacecraft data would employ
a similar approach using the F_READ FTAM service in
place of the F_WRITE service. These services use reliable
connection-oriented Transport Protocol Four (TP-4) [11].

The process control category is composed of a diverse
list of data flow types:

(1) Monitor data flow throughout the DSN to inform
operations personnel of the status of all operational
elements. The monitor data report the position of
antennas, the condition of receivers, the available
communications facilities, and the values of many
other detailed components.

(2) Control data flow to each of the diverse elements to
effect change and allocate DSN resources to support
specific activities. Anomalies detected at the sub-
system level generate messages to alert operations
personnel.

(3) Support data files are transferred throughout the
DSN to provide configuration and control informa-
tion at the subsystem level.
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The diversity of data flow results in a partitioning of
functional requirements across several OSI application en-
tities.

(1) Station Monitor and Control. The data flow for
monitor and control of the Deep Space Stations is
supported with the services of the OSI MMS and is
discussed in more detail in the next section.

(2) Communications Resource Management. The OSI
Network Management Service (NMS) provides the
tools necessary to manage the communication re-
sources of an OSI-compatible network. The security
element of network management provides the appa-
ratus to extend access to the DSN to those functions
that require DSN connection, while providing the
necessary safeguards against unauthorized access.

Other elements of network management iden-
tify and automatically report communications per-
formance, problems, and failures, and thus provide
DSN operations with the tools necessary to maintain
the flow of data. The allocation of DSN resources in
support of specific missions is reported through the
accounting element of network management, which
provides detailed information on DSN support per-
formance and feedback to the scheduling teams.

(3) Support and Command Files. The transfer of sup-
port and command data is supported with the ser-
vices of FTAM.

(4) Resource Identification. The identification of re-
sources within the system is handled through ad-
dress resolution with OSI Directory Services (DS).

(5) Operational Message Services. Administrative mes-
sages supporting operations are distributed through
OSI Message Handling Systems (MHS—better
known as X.400 electronic mail).

The typical architecture for an OSI-based DSN sub-
system is shown in Fig. 2. The OSI application entities
operating in each subsystem will vary from subsystem to
subsystem depending on functional requirements.

One troubling issue remains and requires further re-
search and analysis: the real-time relay of spacecraft data
from the Deep Space Stations to JPL. The DSN employs
dedicated leased communication lines to support the flow
of data between JPL and the Deep Space Stations. The
leased lines are generally expensive, have limited capac-
ity (bandwidth), and operate through satellites in geosyn-
chronous orbit. Traditionally, NASA has developed elab-
orate protocols to support this communication facility.
These protocols are connectionless and designed to maxi-



mize the spacecraft data delivered over the limited capac-
ity lines. Error detection and recovery are handled at the
equivalent of the ISO data-link layer.

OSI connection-oriented protocols have been imple-
mented over satellite communication systems and operate
effectively. However, these protocols employ transport-
level error detection and recovery. Large delays are typi-
cally experienced in transport-level acknowledgments over
satellite systems and have a major negative impact on data
rates. Connectionless OSI protocols could be used, how-
ever, to provide a service similar to the present DSN sys-
tem. At present, there is no OSI application entity based
on connectionless protocols, but the standards are in place
for connectionless presentation (ISO 9576), session (ISO
9548), and transport (ISO 8602) layers. Development of a
real-time data delivery OSI application layer standard is
needed. Such a standard would employ Link Level Con-
trol 3 (LLC3) under ISO 8802-2 to provide a reliable data-
link service.

The most important aspect of this solution is the incor-
poration of the ISO 8473 network protocol which provides
conformance to the CCSDS recommendations and the pro-
posed NASA Communications Network (NASCOM) gate-
way services [2,18]. Commercial high-speed multiprotocol
routers that support ISO 8473 would provide LAN-to-LAN
interconnection over standard commercial communication
services. These routers are inexpensive and the cost to in-
terconnect DSN facilities and support its customers would
be greatly reduced.

V. A DSCC Monitor and Control Prototype

The Monitor and Control System for the DSN DSCC'’s
was selected for an OSI-based prototype system. The pro-
totype activity has provided hands-on experience with OSI
protocols and is expected to substantially reduce the risk of
errors associated with future implementations. The selec-
tion of the Monitor and Control System for the prototype
effort was the result of several factors:

(1) The station monitor and control requirements are
well defined and documented.

(2) The functional requirements for station monitor and
control and the service specification for the MMS
protocol are a close match.

(3) Commercial software products built to the MMS
standard are readily available.

(4) The software and hardware products required for a
prototype are available within the constraints for the
research effort.

(5) The anticipated replacement of the DSCC Monitor
and Control (DMC) Subsystem computer hardware
in the mid-1990s provides an opportunity to transfer
OSI technology to the DSN with substantial cost
savings.

The present Mark IVa Monitor and Control System is
a distributed software architecture. The DMC Subsystem
provides the operator interface to the Mark IVa System. In
addition to the software on the DMC Subsystem comput-
ers, software is required on each individual subsystem (see
Fig. 3). The DMC Subsystem software consists of roughly
220,000 lines of HAL/S source code and represents an in-
vestment of almost 100 work-years.! The replacement of
the aging Modcomp Classics will require moving that sub-
system software to a new computer, and the translation
of the present software to a supported computer language
will require an equivalent investment. In addition, a sur-
vey of four subsystems reveals that 40 to 50 percent of
the total lines of code on any subsystem are dedicated
to_supporting the Mark IVa Monitor and Control System
(see Table 1). Any enhancement of monitor and control
services to expand automation will require additional soft-
ware development and modifications to DMC and all other
subsystems.

An OSI-based monitor and control architecture would
make extensive use of commercial off-the-shelf (COTS)
software packages. All the interprocessor communication
software would use OSI-based commercial software pack-
ages. Most of the subsystem software required for the
Mark I'Va Monitor and Control System would be replaced
with these OSl-based software packages. A commercial
process-control software package would be employed to
support the DMC Subsystem human/machine interface.
The focus of DSN resources would shift from software de-
velopment and maintenance to DSN unique applications.

A. Monitor and Control Functional Requirements

The Mark IVa upgrade (1983-1985) was the first appli-
cation of a local area network (LAN) in the DSN to sup-
port centralized monitor and control. The LAN provides
a communication highway to all of the station subsystems.
The monitor and control computers provide software for
the station personnel to control the subsystems and dis-
play subsystem status information. The subsystems pro-
vide software to interpret remote commands and generate
status information. Using this approach, the Mark IVa
architecture distributes elements of the Monitor and Con-

1S, Fowler, personal communication, Data Systems Section, Jet
Propulsion Laboratory, Pasadena, California, April 1991.
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trol System to all of the station subsystems. The Mark
IVa architecture 1s schematically represented in Fig. 3.

An OSI-based architecture would redistribute the mon-
itor and control functions and concentrate the human in-
terface in the DMC Subsystem instead of the individual
subsystems being controlled. Operator directives would
be processed and displays generated by the DMC Sub-
system and not by the individual subsystems. An MMS
network server would send configuration and control in-
formation to the subsystems and poll the subsystems for
status. A real-time database would link the human inter-
face services with the MMS network server. Figure 4 is a
graphical representation of this architecture. The key ele-
ment in this approach is the MMS abstract model called
the Virtual Manufacturing Device (VMD), which is used
to describe the externally visible characteristics of a real
device. Software modules that manipulate a real device
are called VMD objects. These objects can be manipu-
lated using MMS services such as context management,
variable access, domain management, semaphore manage-
ment, and event management. State changes detected in
the real device and defined in the VMD model can trigger
MMS services. Applied to the DSN, subsystems would be
modeled as one or more VMD’s and operated across the
network through MMS services.

The major differences between the Mark IVa architec-
ture and an OSI-based architecture are that in the OSI-
based architecture

(1) The subsystem interface is defined as a virtual ma-
chine and establishes a basis for automation through
machine-to-machine communications.

(2) The architecture removes the human interface from
the individual subsystems and isolates the human
interface in the DMC Subsystem.

A comparison of Mark IVa functional requirements par-
titioned to MMS protocol services is presented in Table 2.
A complete list of the 86 MMS services can be found in
Appendix A.

B. Prototype Configuration

The prototype configuration incorporates three subsys-
tems that mirror the typical functions required for station
operations. This configuration is shown schematically in
Fig. 5 and consists of three computers performing the fol-
lowing functions:

(1) The Link Monitor and Control (LMC) Subsystem
provides the human interface to operate the station.
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(2) The Very Long Baseline Interferometry (VLBI) Sub-
system operates the Wide Channel Band (WCB)
equipment for signal processing and data recording.
The WCB equipment is installed at DSS 13 and is
typical of DSN subsystems: uniquely designed for
NASA with no commercial equivalent.

(3) The Advanced Power Meter (APM) is a collection of
hardware designed to measure antenna system tem-
peratures without continuous recalibration. This
system 1s under development in the DSN Telecom-
munications Division and is installed at DSS 13.

All of the computers used to operate the prototype are In-
tel 80286/80386-based systems operating under Microsoft
DOS 3.3 (see Table 3).

The motivation for the prototype configuration is de-
rived from a requirement for accurate flux measurements
of radio sources used for spacecraft navigation.? The cat-
alog of radio sources for navigation is being expanded and
the radio flux stability of a source is one of the selection
criteria for the catalog. The Mark IVa architecture does
not provide a mechanism for the VLBI Subsystem to con-
trol the Precision Power Meter (PPM) Subsystem; flux
measurements can be acquired only through manual op-
eration of the PPM by station personnel. The prototype
was designed to examine how subsystem automation would
be enhanced through the application of MMS protocols.
To accomplish this goal, the prototype provides for three
client—server relationships:

(1) Link Monitor and Control Subsystem (client) to the
VLBI Subsystem (server).

(2) Link Monitor and Control Subsystem (client) to the
Advanced Power Meter (server).

(3) VLBI Subsystem (client) to the Advanced Power
Meter (server).

The ease with which these relationships are established
for control and data acquisition indicates that the MMS
will simplify the software development effort in the DSN.

The computers are interconnected with an ISO 8802-4
carrier band token bus local area network (5-MHz band-
width) using Concord Communications 1210 and 1215
boards. The lower six OSI stack layers (presentation [layer
six] to physical [layer one]) are downloaded to the Con-
cord board during a configuration process. The MMS
software (layer seven) was supplied by Systems Integra-
tion Specialists Corporation (SISCO). All MMS services

2 R. Linfield and C. Jacobs, personal communication, Jet Propulsion
Laboratory, Pasadena, California, February 1989.



in the prototype employ Transport Protocol Class 4
(TP4), a connection-oriented transport protocol with error
detection and recovery. A commercial software package,
FactoryLink by U.S. Data, was purchased and integrated
into the prototype to support the human interface func-
tions for the Link Monitor and Control Subsystem.

C. Results

The allocation of station resources is supported with the
application of MMS context management services. These
services include the following basic functions:

(1) Initiate.

(2) Conclude.

(3) Cancel.

(4) Abort.

In addition, the protocol specification includes the fol-
lowing functions to support the client-server relationship:

(1) Initiate request.

(2) Initiate indication.

(3) Initiate response (positive and negative).

(4) Initiate confirm (positive and negative).

(5) Conclude request (positive and negative).

(6) Conclude indication.

(7) Conclude response (positive and negative).

(8) Conclude confirm (positive and negative).
A typical protocol exchange is shown in Fig. 6. To begin
a session, a client initiates a connection (mv.nit()), which
triggers an indication (u.mllp_a_assoc_ind()) on the target
server. The target server responds (u_mllp_a_assoc_resp())
and triggers a confirmation (u_mv_read_conf()) on the
client. This exchange is characteristic of all MMS con-
firmed services. A functional addressing scheme similar
to that implemented in the Mark IVa System was real-

ized through the Application Reference Name (AR-Name)
conventions in the MMS protocol.

The distribution of support files (predicts) employs the
MMS File Management services:

(1) Copy.
(2) Obtain.
(3) Open.
(4) Read.

(5) Close.

(6) Rename.

(7) Delete.
Again, the protocol specification includes functions to sup-
port the client-server relationship: request, indication, re-
sponse, and confirmation. As in Mark 1Va, the prototype
Monitor and Control System distributes predict (PR) files
and standards and limits (SL) files to the appropriate sub-
system prior to a scheduled activity. The MMS Obtain File
service is used to transmit the file names to be copied by
the subsystem from the DMC Subsystem. The Obtain File
Indication triggers the MMS software on the subsystem to
copy the file across the LAN (see Fig. 7). The prototype

code for an MMS service call requires the destination, the
source file name, and the destination file name:

send_file(subsystem, source file, destination file)

or more specifically,

send file(“VLBI”, “PREDICTS.DAT”,
“NOVA1987.DAT”)

Subsystem Directives, Displays, Events, and Alarms
are supported through the application of MMS Variable
Access services:

(1) Read variable.
(2) Write variable.
(3) Information report.
(4) Get variable access attributes.
(5) Define named variable.
(6) Delete variable access.
(7) Define named variable list.
(8) Get named variable list attributes.
(9) Delete named variable list.
(10) Define named type.
(11) Get named type attributes.
(12) Delete named type.
These services can be used to read or write a wide range

of MMS standard variable types defined in the protocol
specification:
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(1) Boolean—S8 bits.

(2) Integer8—38 bits.

(3) Integer16—16 bits.

(4) Integer32—32 bits.

(5) Unsigned Integer8—8 bits.

(6) Unsigned Integer16—16 bits.

(7) Unsigned Integer32—32 bits.

(8) Floating point—32 bits.

(9) Double floating point—64 bits.
(10) ASCII String8—S8 bytes.
(11) ASCII String16—16 bytes.
(12) ASCII String32-—32 bytes.
(13) ASCII String64—64 bytes.
(14) ASCII String128—128 bytes.
(15) ASCII String256—256 bytes.

In addition, the protocol supports the definition of com-
plex variable types that include arrays and data structures.
For example, one can define a C language data structure
for a VLBI Subsystem device called the IF Distributor.
This device has two inputs (character strings), two at-

tenuation controls (integer values), and two total power
integrators (floating-point values):

struct IFD_TYPE { char if_1_in[4],
char if_2_in[4],
short if_1_att,
short 1f_2_att,
float if_1_pwr,
float if 2_pwr } ifd_status

When defined as an MMS complex variable, the entire
structure can be written or read across the network as
though it were a single variable with the name “ifd_status”
of type “IFD_TYPE.” Arrays of simple variables and struc-
tures can be handled in the same way. In addition, struc-
tures can be nested, that is, a structure can be within a
structure.

In an MMS-based Monitor and Control System, oper-
ator directives are entered, converted to data, and trans-
mitted by the DMC Subsystem to the individual subsys-
tems using the confirmed MMS Variable Write service. An
MMS confirmed service requires a response from the server
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to the client to verify the success or failure of the service.
For example, the VLBI Wide Channel Band Subsystem
has an attenuation control that requires operator adjust-
ment. In the prototype system, a change of attenuation to
23 dB is entered through the graphical user interface and
the MMS Variable Write service is used to transmit the
data across the LAN to the VLBI Subsystem. The pro-
totype code for the MMS Variable Write service requires
the subsystem destination, the variable name, the variable
type, and the data:

write_named_var( “VLBI”, “if_1_att”, “Integer16”, 23)

Operator displays are constructed on the DMC Sub-
system from data obtained across the LAN using the con-
firmed MMS Variable Read service. In the prototype, a
polling system was implemented to read the data from
each subsystem on a periodic basis. Again based on the
earlier VLBI example, the prototype code for the MMS
Variable Read service requires the subsystem source, the
variable name and the variable type:

read_named_var(“VLBI” “if_1_att” - “Integer16”)

Event and Alarm conditions are reported across the
LAN using the unconfirmed MMS Information Report
(info_report) service, a variation on the Variable Write ser-
vice. Unlike the Variable Read and Write services, which
must be initiated by the client, the Information Report ser-
vice can be initiated by a server. The protocol specification
does not require the client to acknowledge an information
report, therefore the service is unconfirmed. Though un-
confirmed (see Fig. 8) at the application layer, the Infor-
mation Report service employs TP4, a reliable transport
protocol service. The first goal in the prototype effort was
to simulate the functions in DSN operations today. The
Mark IVa Event/Alarm messages consist of text informa-
tion for the operator. The messages are transmitted by
the subsystems to the DMC Subsystem with a category
identification:

(1) PROMPT.

(2) PROGRESS advisory.
(3) COMPLETION advisory.
(4) DEVIATION advisory.
(5) WARNING alarm.

(6) CRITICAL alarm.

(7) EMERGENCY alarm.



In the prototype, seven MMS-named variables are defined
with the same Mark IVa names, each as a 64-character
ASCII string. The prototype code for the DSN Event Mes-
sage service requires the subsystem destination, the event
name, and the message:

event_msg(subsystem, type, message)
or more specifically,
event_msg(“VLBI”, “COMPLETION”,
“Data recording started”)

The commercial monitor and control software package
employed in the prototype offers another approach to re-
porting event and alarm conditions. Commercial monitor
and control packages provide a service to generate and
manage alarms based on changes detected in their real-
time database. Again using the VLBI Subsystem as an
example, the VLBI Subsystem controller monitors all of
its devices every 15 sec. If a deviation in the expected
configuration is detected, the VLBI Subsystem software
can use the MMS Information Report service to update
the DMC Subsystem:

dsn_send_info_rpt(subsystem, var_name, var_type, data)
or more specifically,
dsn_send.info_rpt(“VLBI”, “if.1_att”, “Integer16”, 18)

The MMS network server on the DMC Subsystem up-
dates the real-time database and the commercial alarm-
management software triggers an operator alarm.

In the Mark IVa era, monitor data blocks are trans-
mitted from each subsystem to the DMC Subsystem. In
turn, the DMC Subsystem acts as a middleman and redis-
tributes monitor data to all of the subsystems. The data
contained in the monitor data block are individually ne-
gotiated in advance, in detail, down to the bit level. In an
MMS-based architecture, the data acquired through Vari-
able Read services to support DMC Subsystem displays re-
place the current monitor data blocks. The redistribution
of monitor data is supported with Variable Write services.
In addition, the careful application of direct subsystem-
to-subsystem Variable Read services would eliminate the
middleman function of the DMC Subsystem.

D. Prototype Performance

The performance of any computer system is highly de-
pendent on the specific implementation and is not a func-
tion of the protocol alone. Some of the factors that impact
system performance are

(1) Software architecture.
(2) Software implementation.
(3) Operating systems.

(4) Computer hardware.

(5) Communication medium.

(6) Supporting hardware.

The resource constraints for this research effort defined
the hardware and software options available for the proto-
type. The selection of the token bus LAN was one conse-
quence of the constraints. In addition, the effort did not
permit the acquisition of a token bus network analyzer,
the lack of which limited the range of performance tests.
Given these limitations, performance tests were developed
to provide a baseline for comparison with future imple-
mentations. These tests focus on the key services:

(1) Time required to establish a connection.
(2) File transfer data rates.
(3) Variable write data rates.

(3) Variable read data rates.

The average time required to establish a connection on
the prototype system ranged from 0.2 to 0.3 sec. This mea-
surement includes the time to build, transmit, and process
all four elements of the specified protocol shown in Fig. 6.
A direct comparison with the present system is difficult
because today’s DSN is based on connectionless protocols.
However, the time required for an operator directive to be
acknowledged in the present system ranges from 1 to 3 sec.

The performance results of the MMS Obtain File ser-
vice are plotted in Fig. 9. These results indicate that rates
of 4500 bytes/sec can easily be achieved. The difference
in the performance of the two computers (8 MHz versus
6 MHz) reflects not only the central processing unit (CPU)
performance but the difference in disk access speed of the
two computers. The average disk access speed for the Ev-
erex (8-MHz) computer was 19.9 msec while the IBM AT
(6-MHz) computer disk access speed was 37.9 msec. The
Mark IVa support files range in size from 1000 to 80,000
bytes; the DMC Subsystem transmits these files at a rate
of 1800 bytes/sec. Based on the prototype results, the
implementation of MMS File Management services would
double the present throughput performance.

The performance results for the Variable Access ser-
vices are plotted in Figs. 10 and 11, and reflect their sen-
sitivity to the CPU and memory speed of the prototype
computers. The data rates reported for the prototype tests
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are for application data. The number of bytes transmitted
in an MMS message packet is a function of the specific
MMS service and the application data. For example, the
packet generated to write a single variable string of 1000
characters contains 1019 bytes. The packet generated to
write an array of 500 16-bit integers (1000 bytes of data)
contains 1948 bytes. The application layer data included
to support the processing of the packet accounts for the
difference in the packet size. (See Appendix B for a de-
tailed example of the MMS message formulation.) Arrays
of 16-bit integers, arrays of 32-bit floating point variables,
and a series of ASCII strings were created to generate tests
with packets of 4, 20, 200, 464, 732, and 1000 bytes of ap-
plication data.

Once viewed as unnecessary protocol overhead, the ap-
plication layer data perform a vital role in the communi-
cation process by defining all elements of the data packet.
The benefits are realized through application software that
is independent of the communication process. In the past,
protocol design was motivated by communication band-
width limitations. Today, modern LAN’s have alleviated
many of the bandwidth limitations. The performance re-
sults obtained for MMS Variable Access services are typi-
cal for packet transfer protocols. Note that Variable Reads
and Writes of individual variables are less efficient than
Reads and Writes of large data structures and arrays.
Based on these results, an MMS-based Monitor and Con-
trol System should require subsystem VMD’s designed to
use data structures and arrays whenever possible and ap-
propriate.

E. Intersubsystem Automation

One of the primary objectives of the prototype effort
was the exploration of subsystem-to-subsystem automa-
tion using MMS protocols. For this effort, the software for
the Advanced Power Meter was designed to operate in two
modes:

(1) In single measurement mode, the power meter per-
forms a simulated discrete system temperature mea-
surement.

(2) In continuous mode, the power meter performs re-
peated system temperature measurements.

Software was developed for the VLBI Subsystem con-
troller to establish a direct client-server relationship with
the power meter controller. Under the command of the
DMC Subsystem, the VLBI Subsystem can set the power
meter operating mode (see Fig. 12). In single measure-
ment mode, VLBI uses the MMS Variable Write service
to trigger the power meter to perform a single system

190

temperature measurement based on the contents of the
VLBI predict schedule. On completion of the measure-
ment, the power meter reports the results back to VLBI
using the MMS Information Report service. In continuous
mode, VLBI uses the MMS Variable Write service to set
the power meter to continuous sampling mode, and the
VLBI Subsystem performs an MMS Variable Read to ob-
tain the latest results based on its predict schedule. The
VLBI Subsystem and DMC Subsystem interfaces to the
power meter are identical. The establishment of this rela-
tionship was straightforward and simple to implement.

F. Commercial Monitor and Control Packages

One of the benefits of implementing systems based on
the standards is the availability of products designed to
operate with the standards. In the process control world,
there are a number of commercial products available for
factory automation. These products provide graphical
user interfaces for monitor and control, communication
services to process control devices, logging of real-time
performance data, operator alarm notification, and a va-
riety of other services. The products are table driven and
designed to be tailored and installed in any process con-
trol environment without software modifications. Several
companies which produce these products have developed
MMS interfaces to their systems. The U.S. Data product
FactoryLink is one example. The FactoryLink DOS prod-
uct (for IBM PC’s) has been integrated in the prototype
to provide operator control and a graphical user interface
with time-ordered (trending) plots of real-time data [19].

G. Future Steps

The MMS prototype is the basis for a new Monitor and
Control System to be developed and installed at DSS 13
in 1992. This system will provide centralized monitor and
control for all of the core subsystems planned for the new
34-meter beam waveguide antenna. The DSS-13 effort will
provide an expanded test bed to examine other MMS ser-
vices such as

(1) Domain management.

(2) Semaphore management.

(3) Event management.

(4) Journal management.

Beyond the MMS effort, a full and complete evaluation
of FTAM services and protocols is necessary before FTAM

can be applied to centralized data recording at the DSN
stations.



VI. Conclusions

The DSN can adopt an OSI architecture and would
benefit from the application of OSI services and protocols
in several areas.

(1) OSI would provide the DSN with a set of interpro-
cessor communication standards that can be speci-
fied in all future implementations. Wide industrial
support for OSI will insure a selection of vendors
while providing compatibility with future implemen-
tations.

(2) The development costs for OSI products will be dis-
tributed over the worldwide market, reducing DSN
costs for network services. Manufacturers will com-
pete to have highly reliable, high performance prod-
ucts at a relatively low price.

(3) The application of the MMS would provide the foun-
dation for increased automation of the DSN. MMS
establishes the client-server relationship and ser-
vices required to operate multiple computers oper-
ating as a single system.

(4) The application of FTAM services would provide the
basis for network file servers in the DSN. FTAM ser-
vices would be used to record data, play back data,
and transfer files more reliably.

(5) The application of standard OSI protocols estab-
lishes an internetworking system based on the ISO
8473 internetwork protocol. Commercial Wide Area
Network (WAN) bridges and routers would be em-
ployed to interconnect the distributed DSN facilities
at reduced investment. In addition, the utilization
of the ISO internetwork protocol would simplify the
exchange of data between agencies, particularly as
the international community moves to OSI.

(6) The application of OSI Network Management would
provide the services to control communication re-
sources, identify fault conditions, account for net-
work utilization, and insure full security in an open
system.

New products based on the OSI services are already un-
der development. A number of companies are developing

programmable logic controllers (PLC’s) based on the OSI
MMS standards; other companies are developing MMS
servers to support commercial database products. Com-
mercial products are already available to provide monitor
and control systems for factories and their adaptation to
OSI services is under way.

The cost of transition to OSI may be equal to, or even
exceed, the cost of other networking solutions in the short
term. However, the federal policy to adopt OSI is based
on the long-term cost benefits (estimated by the National
Research Council at 30 to 80 percent of the implementa-
tion cost for new computer systems) [6]. OSI-based MMS
products have been introduced by companies such as Dig-
ital Equipment Corporation (DEC), International Busi-
ness Machines (IBM), Hewlett-Packard, and Motorola for
a wide range of computers, indicating industry’s commit-
ment to the standards. The cost of software development,
test, and integration is thus distributed over their large
customer base. In addition, the MMS Standard has been
developed to meet the diverse demands of commercial in-
dustry and offers a spectrum of services that this research
has shown to be more than adequate to meet the DSN
requirements for DSCC monitor and control in the next
century. Moreover, the layered OSI architecture would
enhance the DSN’s ability to cope with changing require-
ments and technologies.

In a broader sense, the adoption of ISO protocols would
benefit the DSN by incorporating it into the world net-
working community. The Consultative Committee for
Space Data Systems [2] has adopted the OSI architec-
ture as the basis for international space data systems and
the ISO 8473 network protocol is a key component of
the CCSDS architecture. In addition, GOSIP requires
all federal procurement of networking services to employ
ISO protocols [1]. In response to GOSIP, the NASA Sci-
ence Internet (NSI) is making the transition to OSI and
NASCOM is planning a transition to OSI in the 1990s
[18].3 The adoption of an OSI architecture and the appli-
cation of OSI protocols is necessary to meet the demands
of DSN customers in a cost-effective manner.

3 R. Nitzen, personal communication, NASA Headquarters, Wash-
ington, DC, April 1990.

191



192

(1]

(4]
(5]

(6]

(7]

9]

(10]

(11]

(12]

[13]

[14]

(15]

(16]

References

U.S. Department of Commerce, National Bureau of Standards, Federal Informa-
tion Processing Standards Publication—146, Government Open Sysiems Inier-
connection Profile, Washington, DC, August 1988.

Consultative Committee for Space Data Systems (CCSDS), Advanced Orbit-
ing Systems, Nelwork and Data Links: Architectural Specification, Blue Book,
CCSDS 701.0-B-1, CCSDS Secretariat, NASA, Washington, DC, October 1989.

C. Morgan, “Department of Defense Plans for Open Systems Interconnection,”
in Case Studies in Implementing OSI (tutorial), Interop Incorporated, Mountain
View, California, October 1989.

U.S. Department of Defense, Military Standard Transmission Conirol Protocol,
MIL-STD-1776, Washington, DC, August 1983.

U.S. Department of Defense, Military Standard Internet Protocol, MIL-STD-
1777, Washington, DC, August 1983.

National Research Council, Transport Protocols for Department of Defense Dala
Networks, PB85-176147, National Technical Information Service, Springfield,
Virginia, February 1985.

U.S. Department of Defense, The Department of Defense Open Systems Inter-
connection (OSI) Implementation Strategy, planning document, Reston, Virginia,
May 1988.

United States Congress, “Computer Security Act of 1987,” Public Law 100-235,
Congressional Record, vol. 133 (1987), approved January 8, 1988.

R. C. Brooks, “Department of Veterans Affairs,” in Case Studies in Implementing
OS] (tutorial), Interop Incorporated, Mountain View, California, October 1989.

International Organization for Standardization, Information Processing Sys-
tems—Open Systems Interconnection—Basic Reference Model, 1SO 7498, Amer-
ican National Standards Institute, New York, October 1984.

J. Henshall and S. Shaw, OSI Ezplained, End-to-End Computer Communication
Standards, West Sussex, England: Ellis-Horwood Limited, pp. 10-20, 1988.

K. G. Knightson, J. Larmouth, and T. Knowles, Standards for Open Systems
Interconnection, New York: McGraw-Hill Book Company, pp. 12-19, 20-54, 259~
301, 1988.

International Organization for Standardization, Information Processing Sys-
tems—OQOpen Systems Interconnection—Manufacturing Message Specification,
ISO 9506, American National Standards Institute, New York, 1989.

International Organization for Standardization, Information Processing Sys-
tems— Open Systems Interconnection—Basic Reference Model, Part 4: Manage-
ment Framework, ISO 7498-4 (Draft International Standard), American National
Standards Institute, New York, 1988.

International Organization for Standardization, Information Processing Sys-
tems—OQOpen Systems Inlerconnection—Systems Management Quverview, 1SO
10164 (Draft Proposal), American National Standards Institute, New York, 1990.

International Organization for Standardization, Information Processing Sys-
lems—Open Systems Interconnection—Siructure of Management Information,



ISO 10165 (Draft Proposal), American National Standards Institute, New York,
1990.

[17] R. Brennan, K. Thompson, and R. Wilder, “Mapping the X Window onto Open
Systems Interconnection Standards,” IEEE Network Magazine, vol. 4, no. 2,
pp. 32-40, May 1991.

[18] NASCOM Service Gateway Protocol Study, Computer Sciences Corporation,
Greenbelt, Maryland, July 1988.

[19] United States Data Corporation, FactoryLink Sofiware System, Publication TP-
FLDOS 1/90, Richardson, Texas, January 1990.

[20] P. Norton, The Norten Utilities Version 5.0 User’s Guide, Peter Norton Com-
puting, Inc., Santa Monica, California, pp. 266-270, 1990.

193



Table 1. Subsystem lines of code supporting the Mark IVa Monitor
and Control System.

. t f
Subsystem Lines of code Percentage of code

for M&C
Monitor and Control 220,000 100
VLBI 107,152 40
Command 23,644 40
Telemetry 60,940 50
Radio Science 53,335 40
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Table 2. The functional requirements for Mark IVa Monitor and Control (on the left) and the equivalent MMS

protocol services (on the right).

Mark IVa functional requirements

MMS protocol services

Resource allocation

Context Management

Supported with the distribution of Functional Address
Tables by Complex Monitor and Control. These tables
are used to identify subsystems engaged to support
specific station activities. All communications between
subsystems are based on addresses in these tables.

Supported with context (connection) management
services through the Application Reference Name.

Distribution of support data

File Management

Support data are received by the DMC Subsystem
from the Network Operation Control Center and
redistributed to individual subsystems prior to a
station activity. Subsystems that require support data
must have software to accept and process support
data blocks distributed by the DMC Subsystem.

Support data files are transmitted to and from
the DMC Subsystem using the FTAM services
provided in the MMS specification: File Copy,
File Obtain, File Open, File Read, File Close.

Operator directives

Variable Access

Operator directives to configure or control the sub-
systems are entered by an operator at DSCC Monitor
and Control (DMC) and processed into messages
which are transmitted to the appropriate subsystem
across the LAN. Subsystems process directive
messages received from DMC to perform the
requested functions.

Operator directives for subsystem configuration
and control are entered on the DMC Subsystem,
converted to the data required by the subsystem,
and MMS Variable Write services deliver the
data across the network to the subsystem.

Subsystem displays

Variable Access

Subsystem health and performance information is
reported to the operator through subsystem displays.
Subsystem display data blocks are generated and
transmitted across the LAN by each subsystem on
request from an operator. The DMC Subsystem is
responsible for processing and presenting of sub-
system displays for the operator.

Subsystem data for health and performance are
obtained using MMS Variable Read services.
The data are presented to the, operator
through graphical displays built by the

DMC Subsystem.

Events and Alarms

Variable Access

Subsystem Event and Alarm conditions are generated
and reported to DMC. The DMC Subsystem
processes Event messages, displays the messages to
the operator and logs the messages to an archive file.

Subsystem Event or Alarm conditions are
reported to the DMC Subsystem using the MMS
Information Report service. MMS Journal
services log Events and Alarms to an archive file.

Monitor data

Variable Access

Monitor data are transmitted by each active sub-
system to DMC based on negotiated interface agree-
ments. In addition, the DMC Subsystem redistributes
monitor data to all of the subsystems based on the
negotiated interface agreements.

Monitor data are obtained using the MMS
Variable Read services. The redistribution of
monitor data is accomplished with MMS
Variable Write services.
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Table 3. The computer hardware used for the prototype Is listed with Its
Norton Performance Index [20].

Central Norton
. Clock speed,
Subsystem Computer  processing Performance
. MHz
unit Index

Link Monitor BiLink 386 80386 20 23.0
and Control (LMC)
Very Long Everex 1800 80286 8 7.7
Baseline Interferometry
(VLBI)
Advanced Power IBM AT 80286 8 5.7

Meter (APM)
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NETWORK MANUFACTURING | | FILE TRANSFER, MESSAGE DIRECTORY REAL-TIME
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SERVICE SPECIFICATION MANAGEMENT SERVICE DELIVERY
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Fig. 2. An Open Systems Interconnection architecture will access communication services through application entities.
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Fig. 3. A schematic representation of the Mark IVa monitor and control architecture, which requires software on

each subsystem to support monitor and control.
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Fig. 4. A schematic representation of an OSI-based monitor and control architecture, which employs MMS to

support all monitor and control functions.
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1SO 8802-4
MONITOR AND CONTROL SUBSYSTEM LAN VLBI SUBSYSTEM
GRAPHIC WIDE
TASK VLBI CHANNEL
TASK BAND
HARDWARE
TIMER
TASK
DATA-
BASE POWER METER SUBSYSTEM
TRENDING
TASK
POWER
T:hsﬂK — METER
FILE HARDWARE
TASK

Fig. 5. The OSI monitor and control prototype consists of three subsystems, Link Monitor
and Control, VLBI, and the Advanced Power Mster.

CLIENT LAN SERVER
my_fobtainQ ==\ — | _, _fobtain_ind()
CLIENT LAN SERVER «= mp_fopen
- - - u_fopen_ind() *= - p-fopen()
ESTABLISH A CONNECTION mp_fopen_resp() ==| —s | —su_mp_fopen_conf()
mv_init() e u_fread_ind() e==| <= [ *==mp_fread()
= |== u_mlip_a_assoc_ind() mp_fread_resp() *=*| = | —=u_mp_fread_conf()
— | u_mllp_a_assoc_resp() u_fclose_ind() e=| = «=mp_fclose()
u_mv_init_conf() e== mp_fclose_resp() =
= | == y_mp_fcopy_conf()
WRITE A VARIABLE u_mp._fobtain_conf() == ‘FJ <—mp_fobtain_resp()
write_named_var() == =
- -varQ = | u_write_ind() =
= MV_write_resp()
U_mv_write_conf() e Fig. 7. The File Transfer, Access and Management
protocol exchange for the Obtain File service is
READ A VARIABLE outlined above as specified in the MMS Standard.
read_named_var() m=s
T lee u_read_ind()
= Mv_read_resp()
mv_read_conf() b
U_mv_168c_oconty e= lg CLIENT LAN SERVER
=
/ o= mv_info_report()
Fig. 6. The protocol exchange between client and u_mv_write_ind() e

server is shown for Context Management and
Variable Access services as specified in the MMS
Standard.

|

Fig. 8. The protocol exchange for the Informa-
tion Report service as specified in the MMS
Standard.
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Fig. 9. The performance of the MMS Obtain File service in
the protolype environment.
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Fig. 10. The performance of the MMS Variable Write service in
the prototype environment for application data in bytes/sec.
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Fig. 11. The performance of the MMS Variable Read service in
the prototype environment for application data in bytes/sec.
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Fig. 12. The client-server relations for automation of the Advanced Power Meter in the
prototype Monitor and Control Subsystem.
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I. Connection Services
Initiate
Conclude
Cancel

Abort

Il. VMD Support Services
Status
Unsolicited Status
GetNameList
Identify
Rename

GetCapabilityList

Ill. Domain Management Services

Initiate DownSequence
DownloadSegment
TerminateDownSequence
InitiateUploadSequence
UploadSegment
TerminateUploadSequence
RequestDomainDownload
RequestDomainUpload
LoadDomainContent
StoreDomainContent
DeleteDomain

GetDomainAttributes

IV. Program Invocation Management

Services
CreateProgramInvocation
DeleteProgramInvocation

Start

Appendix A
List of MMS Protocol Services

Stop
Resume
Reset
Kill

GetProgramlInvocationAttributes

V. Variable Access Services

Read

Write

InformationReport
GetVariableAccessAttributes
DefineNamedVariable
DefineScatteredAccess
GetScatteredAccessAttributes
DeleteVariableAccess
DefineNamedVariableList
GetNamedVariableListAttributes
DeleteNamedVariableList
DefineNamedType
GetNamedTypeAttributes
DeleteNamedType

VI. Semaphore Management Services

TakeControl
RelinquishControl
DefineSemaphore
DeleteSemaphore
ReportSemaphoreStatus
ReportPoolSemaphoreStatus
ReportSemaphoreEntryStatus
AttachToSemaphoreModifier

VII. Operator Communication Services

Input
Output
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VIIl. Event Management Services

204

DefineEventCondition
DeleteEventCondition
GetEventConditionAttributes
ReportEventConditionStatus
AlterEventConditionMonitoring
TriggerEvent
DefineEventAction
DeleteEventAction
GetEventActionAttributes
ReportEventActionStatus
DefineEventEnrollment
DeleteEventEnrollment
GetEventEnrollmentAttributes
ReportEventEnrollmentStatus
AlterEventEnrollment
EventNotification
AcknowledgeEventEnrollment

GetAlarmSummary

GetAlarmEnrollmentSummary

AttachToEventConditionModifier

IX. Journal Management Services

ReadJournal
WriteJournal
InitializeJournal
ReportJournalStatus
CreateJournal

DeleteJournal

X. File Management Services

ObtainFile
FileOpen
FileRead
FileClose
FileRename
FileDelete
FileDirectory



Appendix B

MMS Message Formulation

The precise formulation of an MMS message is dependent on the
service and defined 1in the standard specification. The
construction and interpretation of MMS messages in the prototype
were performed by commercial MMS software, and detailed knowledge
of the process is not required to employ the protocol. However, a
brief examination of how one MMS message is defined and constructed
will yield insight into the complexity and versatility of the
protocol.

The process for the MMS Variable Write service begins with an MMS
protocol data unit (PDU):

MMSpdu HEK ¢
conf i rmed-Reques tPDU {01 IMPLICIT Confirmed-RequestPDU,
confirmed-ResponsePDU {1)  IMPLICIT Confirmed-ResponsePDU,
confirmed-ErrorPDU [2)  IMPLICIT Confirmed-ErrorPDU,
unconf i rmed-PDU [3] IMPLICIT Unconfirmed-PDU,
rejectPDU [4] IMPLICIT RejectPDU,
cancel -Request-PDU [51 IMPLICIT Cancel-RequestPDU,
cancel -Response-PDU [6] IMPLICIT Cancel -ResponsePDU,
cancel -ErrorPDU [71 IMPLICIT Cancel-ErrorPDU,
initiate-RequestPDU [8] IMPLICIT Initiate-RequestPDU,
initiate-ResponsePDU [9]1 IMPLICIT Initiate-ResponsePDU,
initiate-ErrorPDU [101 IMPLICIT Initiate-ErrorPDU,
conc lude-RequestPDU {111 IMPLICIT Conclude-RequestPDU,
conclude-ResponsePDU (12} IMPLICIT Conclude-ResponsePDU,
conclude-ErrorPbU [131 IMPLICIT Conclude-ErrorPDU

M

The confirmed-RequestPDU follows with the Write-Request:

Confirmed-RequestPDU ::=  SEQUENCE {
invokelD Unsigned32,
ListOfModifier SEQUENCE OF Modifier OPTIONAL,
ConfirmedServiceRequest,
[79] CS-Request-Detail OPTIONAL
-- shall not be transmitted if wvalue is NULL

)

Write-Request ::=  SEQUENCE (4
variableAccessSpecification variableAccessSpecification,
listOfData [0} IMPLICIT SEQUENCE OF DATA
>
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The variable access specification and the data follow:

VariableAccessSpecification ::  CHOICE {
listOfvariable [01 IMPLICIT SEQUENCE OF SEQUENCE {
variableSpecification VariableSpecification,
alternateAccess [5] IMPLICIT AlternateAccess OPTIONAL
3,
variablelListName [1] ObjectName
)

Each variable name, address and description is included in the PDU:

VariableSpecification = CHOICE {
name {0] ObjectName,
address [11 Address,
variableDescription [2] IMPLICIT SEQUENCE {
address Address,
typeSpecification TypeSpecification
3,
scatteredAccessDescription [3]1 IMPLICIT ScatteredAccessDescription,
invalidated [4] IMPLICIT NULL

b

The name is presented in the form of ObjectName:

ObjectName ::=  CHOICE {
vind-specific [0] IMPLICIT Identifier,
domain-specific [1] IMPLICIT SEQUENCE {
domainiD Identifier,
itemlD Identifier
3,
aa-specific {21 IMPLICIT Identifier
>

The address parameter is presented in the form of Address:

Address ::=  CHOICE {
numericAddress [0] IMPLICIT Unsigned32,
symbol icAddress [1] IMPLICIT VisibleString,
unconstrainedAddress [21 IMPLICIT OCTET STRING
>




And the type specification takes the following

form:

TypeSpecification ::=  CHOICE (
typeName [01 ObjectName,
array 1 IMPLICIT SEQUENCE <
packed [0]1 IMPLICIT BOOLEAN DEFAULT FALSE,
numberOfE lement [13  IMPLICIT Unsign32,
elementType [2] TypeSpecification
),
structure [2] IMPLICIT SEQUENCE {
packed {0l IMPLICIT BOOLEAN DEFAULT FALSE,
components [ IMPLICIT SEQUENCE OF SEQUENCE (
componentName [0 IMPLICIT Identifier OPTIONAL,
componentType [11 TypeSpecification
2
),
-- Simple
boolean [31] IMPLICIT NULL, -- BOOLEAN
bit-string [4) IMPLICIT Integer32, -- BIT-STRING
integer [5]1 IMPLICIT Unsigned8, -- INTEGER
unsigned [6] IMPLICIT Unsigned8, --  UNSIGNED
floating-point [71 IMPLICIT SEQUENCE {
format-width Unsigned8, --  number of bits in
-- fraction plus  sign
exponent-width Unsigned8 -- size of exponent in bits
>,
real 81 IMPLICIT SEQUENCE 4
base [0] IMPLICIT INTEGER(2|10),
exponent [1]  IMPLICIT INTEGER, -- max number of octets
mantissa [21 IMPLICIT INTEGER -- max number of octets

octet-string
visible-string
generalized-time
binary-time

bed

[9] IMPLICIT Integer32,
[101 IMPLICIT Integer32,
[nm IMPLICIT NULL,

[12] IMPLICIT BOOLEAN,
[13] IMPLICIT Unsigned8

-- OCTET-STRING

--  VISIBLE-STRING
-- GENERALIZEDTIME
-- BINARY-TIME

-- BCD
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Finally, the data are specified:

Data ::=  CHOICE {
--  context tag 0 is reserved for AccessResult
array [ IMPLICIT SEQUENCE OF Data,
structure [2] IMPLICIT SEQUENCE OF Data,
boolean 3] IMPLICIT BOOLEAN,
bit-string [41 IMPLICIT BIT STRING,
integer [5] IMPLICIT INTEGER,
unsigned ()| IMPLICIT INTEGER,
array [71 IMPLICIT FloatingPoint,
real [81 IMPLICIT REAL,
octet-string [9] IMPLICIT OCTET STRING,
visible-string [101 IMPLICIT VisibleString,
generalized-time [11 IMPLICIT GeneralizedTime,
binary-time [12] IMPLICIT TimeOfDay,
bed [13]1 IMPLICIT INTEGER,
booleanArray [14] IMPLICIT BIT STRING
)

Once formulated into a PDU, the message is encoded in Abstract
Syntax Notation One (ASN.1l), then passed to the presentation layer
and down through the lower layers of the protocol stack. At each
step along the way, a protocol data unit is added by each layer
until the entire message is formulated and transmitted on the
physical network.
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